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Abstract. The Lorentz–Dirac equation is solved based on a new momentum expression given
by pα = 1

c2 (uµp
µ)uα + k duα/dτ . This new momentum expression is the form proposed by

Barut modified to satisfy the condition imposed by Dirac. The solution turns out to be well
behaved without violating causality or causing runaway.

1. Introduction

The problem of the motion of a charged, radiating particle is notorious for its strange
behaviour [1–3]. The solutions are either of a runaway type or of the type that will somehow
violate causality. Thus, it seems to be believed that such a problem is essentially quantal
and has no classical solutions without taking into account quantum effects which can yield
sensible results. This may very well be the case. However, what exactly is to be called the
quantum effect is rather debatable. Moreover, even if the final solution must be quantal,
any valid classical theory that can produce a reasonable solution to this notorious problem
shall be of some interest.

In the well known classic paper that established the Lorentz–Dirac equation, Dirac
not only analysed the Lorentz–Dirac equation but also examined possible expressions
of momentum that a radiating electron may take [1]. He concluded that a momentum
expressionBµ may be any vector function ofuµ and its derivatives as long as it satisfies
the condition

uµ
(

dBµ
dτ

)
= 0 (1.1)

whereuµ is the velocity four-vector. However, he decided to take the simplest possible
form which is equivalent to the ordinary momentum expressionpµ = muµ. His justification
was that other choices are more complicated than this simple one so that one would not
expect them to apply to a simple thing like an electron. Whether an electron as a spinning
and radiating particle is that simple is questionable.

In connection with a spinning particle there are theories that the momentum and the
velocity may not be parallel [4, 5]. In regard to radiating electrons Barut proposed the
following momentum velocity relation [6]

pµ = muµ − (2e2/3c3)(duµ/dτ). (1.2)

Although Barut proposed this new momentum expression in connection with the Lorentz–
Dirac equation he did not solve the equation with this momentum expression. An
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examination of (1.2) shows that it is not compatible with the Dirac condition given by (1.1).
If we take the essential idea of Barut’s that the four-momentum for a radiating electron has
a contribution from the four-acceleration, we may make a modification to satisfy the Dirac
condition. We write

pα = 1

c2
(uνp

ν)uα + h̄

kc2

duα

dτ
. (1.3)

Theh̄ is introduced to make the unspecified constantk dimensionless. We shall demonstrate
that, using (1.3) as the definition of momentum for a radiating electron, the Lorentz–Dirac
equation yields well behaved solutions without the defect of running away or violation of
causality.

2. Solutions of the Lorentz–Dirac equation

The Lorentz–Dirac equation in force free space is given by [1–3]

dpα

dτ
= 2e2

3c3

[
d2uα

dτ 2
+ 1

c2

(
duν
dτ

)(
duν

dτ

)
uα
]
. (2.1)

For a better comparison with our new solution, we shall first briefly review how this old
problem was treated by taking the usual

pα = muα. (2.2)

To solve equation (2.1) we assume a constant of the motion of (2.1) of the dimension of
momentum to be given by

Pα = β1u
α + β2

duα

dτ
(2.3)

whereβ1 andβ2 are scalar functions ofτ to be determined. From (2.1) and (2.2), we obtain

m

(
duν
dτ

)(
duν

dτ

)
= e2

3c3

d

dτ

[(
duν
dτ

)(
duν

dτ

)]
(2.4)

hence (
duν
dτ

)(
duν

dτ

)
= −0 = −D2 exp

(
3mc3τ

e2

)
(2.5)

whereD is an integration constant. From (2.3), we obtain

(uνP
ν) = c2β1 (2.6)

dβ1

dτ
= −β2

c2
0 (2.7)

PνP
ν = (Mc)2 = c2β2

1 − β2
20 (2.8)

whereM is some constant of the dimension of mass. Using (2.5), we obtain from (2.8)

β2
2 =

( c
D

)2
exp

(−3mc3τ

e2

)
(β2

1 −M2) (2.9)

hence (2.7) becomes

dβ1

dτ
= ∓

(
D

c

)
exp

(
3mc3τ

2e2

)
(β2

1 −M2)1/2. (2.10)
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Therefore, the results are given by

β1 = M cosh

[
∓2De2

3mc4
exp

(
3mc3

2e2
τ

)]
(2.11)

β2 = ±M
( c
D

)
exp

(−3mc3

2e2
τ

)
sinh

[
∓2De2

3mc4
exp

(
3mc3

2e2
τ

)]
(2.12)

and

uα = Qα sinh

[∓2De2

3mc4
exp

(
3mc3

2e2
τ

)]
+ P

α

M
cosh

[
∓2De2

3mc4
exp

(
3mc3

2e2
τ

)]
(2.13)

whereQα are integration constants satisfying the following relations

QνQ
ν = −c2 (2.14)

QνP
ν = 0. (2.15)

From (2.13) it is obvious that asτ →∞, uα →∞. This is the notorious runaway solution.
Were the sign in front of the right-hand side of (2.1) a minus, rather than a positive sign as
it is, the final result would be

uα = Qα sinh

[
±2De2

3mc4
exp

(−3mc3τ

2e2

)]
+ P

α

M
cosh

[
±2De2

3mc4
exp

(−3mc3τ

2e2

)]
. (2.16)

Result (2.16) appears to be well behaved asτ → ∞. However, Dirac concluded that it
is not possible to tamper with the sign in any relativistic way without getting into further
trouble.

Without tampering with the sign, there is still one option to modify the Lorentz–Dirac
equation which Dirac himself already noted, namely to consider other possible momentum
expressions. We shall now try with the expression (1.3) as follows.

Substituting (1.3) into (2.1), we obtain

d

dτ
pα = d

dτ

[
1

c2
(uνp

ν)

]
uα +

[
1

c2
(uνp

ν)

]
duα

dτ
+ h̄

kc2

d2uα

dτ 2

= 2e2

3c3

[
d2uα

dτ 2
+ 1

c2

(
duν
dτ

)(
duν

dτ

)
uα
]
. (2.17)

Contracting (2.17) withuα we obtain

d

dτ
(uνp

ν)+ h̄

kc2
uν

d2uν

dτ 2
= 0. (2.18)

Thus, we obtain

d

dτ
(uνp

ν) = h̄

kc2

(
duν
dτ

)(
duν

dτ

)
= − h̄

kc2
0. (2.19)

Equation (2.17) can now be rewritten as

duα

dτ
= c2(uνp

ν)−1

(
2e2

3c3
− h̄

kc2

)[
d2uα

dτ 2
+ 1

c2

(
duν
dτ

)(
duν

dτ

)
uα
]
. (2.20)

Contracting (2.20) withduα
dτ we obtain

(−0) = c2

2
(uνp

ν)−1

(
2e2

3c3
− h̄

kc2

)
d

dτ
(−0). (2.21)

Thus
d

dτ
(uνp

ν) = − h̄

kc2
0 = c2

2

(
2e2

3c3
− h̄

kc2

)
d2

dτ 2
ln0. (2.22)
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The solution to (2.22) is given by

0 = (λσc)2(W 2− 1) (2.23)

W = exp(λτ)+ ξ exp(−λτ)
exp(λτ)− ξ exp(−λτ) (2.24)

σ =
[

1− 2ke2

3h̄c

]1/2

(2.25)

whereλ andξ are integration constants to be determined from initial conditions. Integrating
(2.23) or using (2.21) we obtain

(uνp
ν) = c2λ

(
h̄

kc2
− 2e2

3c3

)
W. (2.26)

When (2.23)–(2.25) are substituted into (2.20) the apparently nonlinear equation becomes a
linear equation of second order inuα with time-dependent functions as the coefficients. To
solve (2.20) we make the assumption that

Pα = A1u
α + A2

duα

dτ
(2.27)

is a constant of the motion withA1 andA2 some scalar functions ofτ to be determined.
We then have

PνP
ν = (Mc)2 = c2A2

1− A2
20 (2.28)

c2A1 = uνP ν (2.29)
d

dτ
(uνP

ν) = c2 dA1

dτ
= −A20. (2.30)

Thus

A2
2 = c2(A2

1−M2)0−1 (2.31)
dA1

dτ
= −A2

c2
0 = −λσ [(A2

1−M2)(W 2− 1)]1/2. (2.32)

The solution to (2.32) is given by

A1 = M cosh[σ cosh−1(W)]. (2.33)

Thus from (2.31), we have

A2 = M

λσ
[(W 2− 1)]−1/2 sinh[σ cosh−1(W)]. (2.34)

With A1 andA2 given by (2.33) and (2.34), equation (2.27) can now be solved. The solution
to (2.27) is given by

uα = (P α/M) cosh[σ cosh−1(W)] + ωα sinh[σ cosh−1(W)] (2.35)

where theωα are integration constants satisfying the following relations

ωνω
ν = −c2 (2.36)

ωνP
ν = 0. (2.37)

Differentiating (2.35) we have

duα

dτ
= −λσ [W 2− 1]1/2{(P α/M) sinh[σ cosh−1(W)] + ωα cosh[σ cosh−1(W)]}. (2.38)
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Using (2.26) we can write (1.3) as

pα = h̄

kc2

[
(λσ 2W)uα + duα

dτ

]
. (2.39)

Thus, equation (2.17) is completely solved except for the determination of integration
constants in terms of the initial conditions. The solutions can be seen to be well behaved.

To determine the integration constantsξ and λ in terms of the initial conditions, we
note that from (1.3), (2.26) and (2.23) that the following relations can be established

pνp
ν +

(
h̄

kc2

)2

0 = 1

c2
(uνp

ν)2 = c2λ2σ 4W 2

(
h̄

kc2

)2

=
(
h̄

kc2

)2

σ 2W 20(W 2− 1)−1.

(2.40)

Thus

W 2 =
[
pνp

ν +
(
h̄

kc2

)2

0

][
pνp

ν +
(
h̄

kc2

)2

0(1− σ 2)

]−1

. (2.41)

Now settingτ = 0 (2.41) becomes

W 2
0 = [(1+ ξ)/(1− ξ)]2 =


[
pνp

ν +
(
h̄

kc2

)2

0

][
pνp

ν +
(
h̄

kc2

)2

0(1− σ 2)

]−1


0

.

(2.42)

Hence

ξ = (W0− 1)/(W0+ 1) (2.43)

and from (2.23)

λ = (cσ )−1[00/(W
2
0 − 1)]1/2. (2.44)

To determinePα andωα in terms of the initial conditions we setτ = 0 in (2.35) and (2.38)
to obtain

uα(0) = (P α/M) cosh[σ cosh−1(W0)] + ωα sinh[σ cosh−1(W0)] (2.45)
duα(0)

dτ
= −λσ [W 2

0 − 1]1/2{(P α/M) sinh[σ cosh−1(W0)] + ωα cosh[σ cosh−1(W0)]}.
(2.46)

Then we obtain

Pα

M
= uα(0) cosh[σ cosh−1(W0)] + duα(0)

dτ
(λσ)−1[W 2

0 − 1]−1/2 sinh[σ cosh−1(W0)]

(2.47)

ωα = −uα(0) sinh[σ cosh−1(W0)] − duα(0)

dτ
(λσ)−1[W 2

0 − 1]−1/2 cosh[σ cosh−1(W0)].

(2.48)

Now settingτ →∞ we have asymptotically

uα(∞) = Pα

M

duα(∞)
dτ

= 0 W(∞) = 1 pα(∞) =
(
h̄

kc2

)
λσ 2uα(∞).

(2.49)
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If we identify theM as the asymptotic mass of the charged particle and alsoPα = pα(∞)
then from (2.49) we obtain

M =
(
h̄

kc2

)
λσ 2. (2.50)

Therefore if k is known all the integration constants are given in terms of the initial
conditions. The constantk is introduced from the beginning in (1.3) as something intrinsic
and is not one of the integration constants. Thus it should not be expected to be fixed by
the initial conditions. For our purpose to demonstrate that the solutions of the Lorentz–
Dirac equation using (1.3) are well behaved, the precise value ofk does not matter much.
However, for the expression (1.3) to acquire fundamental significance some way must be
found to definitely fix the value ofk. We do not have a completely satisfactory way for
such a determination and shall leave this problem open.
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